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Abstract

In this thesis, we propose a method to reconstruct a path from its truncated signature. This
is achieved through explicit recursive formulae for the coefficients of an orthogonal polynomial
expansion of the path, represented as linear functionals of the signature. A key example of our
approach is the application of ‘shift-and-scale’ Hermite polynomials, which facilitates the accurate
point-wise recovery of the path with relatively small errors. Consequently, this leads to the suc-
cessful implementation of point-wise signature inversion utilizing Hermite polynomials. The novel
techniques proposed in this study offer an innovative insight into the field of signature inversion
and potentially pave the way for more accurate and efficient computational methods.
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Introduction

The study of path-dependent problems arises in various scientific disciplines, such as finance,
fluid dynamics, and machine learning. Traditional methods like Fourier analysis often struggle to
tackle these problems due to their inherent complexity and nonlinearity (e.g. [1, 2]). This difficulty
motivates the search for new mathematical tools capable of capturing and summarizing the essential
information contained in paths, ultimately leading us to the concept of signatures. Because of rich
geometric and deterministic properties encoded in signatures, under regularity conditions, a path
can be reconstructed from its signatures, leading to the study of signature inversion.

This thesis, divided into three chapters, focuses on a novel method of signature inversion us-
ing orthogonal polynomials. In Chapter 1, we introduce the basic definition and properties of
signatures, alongside the concept of universality, which characterises the ability to approximate
non-linear functions by linear functionals in feature space [3]. Chapter 2 introduces two methods
of path decomposition via orthogonal polynomials and Fourier series. Armed with these tools,
the coefficients for the bases can be found by the universality concept of signatures in Chapter 3,
where all contents are original and novel. Moreover, we elucidate the orthogonal polynomial inver-
sion method and its results on randomly generated paths. The thesis concludes by comparing the
performance of the analytical inversion method via orthogonal polynomials and a learning-based
method via Fourier series across a range of paths.
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Chapter 1

Signatures

1.1 Preliminaries and definitions

1.1.1 Paths

Before elaborating on the signature, we shall first introduce the definition of a path and its integral.
A path x : [a, b] → V is defined as a continuous and differentiable mapping from interval [a, b] to
V , where V denotes a d-dimensional Banach space. Normally, the interval [a, b] is treated as time
to indicate the time dependency of a path. In this case, we could write a high-dimensional path
by its coordinates

x = xt = (x1
t , x

2
t , . . . , x

d
t ),

where t ∈ [a, b] and each coordinate xi : [a, b] → R can be viewed as a 1-dimensional path. For
example, x = (t, t2) for t ∈ [−10, 10] can be roughly seen as a ’U’ shape in R2. It is also a time-
augmented path that encodes the time information in the path.

Now we will introduce the path integral for 1-dimensional paths. For a fixed function f : R → R,
let yt = f(xt), we can define the path integral of y against x as∫ b

a

ytdxt =

∫ b

a

f(xt)dxt =

∫ b

a

f(xt)ẋtdt =

∫ b

a

ytẋtdt,

where ẋt is the derivative of xt with respect to t, i.e. dxt/dt. Consider f(x) = −x and xt = t2 for
t ∈ [0, 1] as an example, path integral of x against f can be written as∫ 1

0

−xtdxt =

∫ 1

0

−t2 · 2tdt = −1

2
.

The requirement that paths are differentiable can be relaxed further. Therefore, we introduce
p-variation for less restrictive paths.

Definition 1.1.1 (p-variation). Let 1 ≤ p ≤ ∞. The p-variation of a path x : [a, b] → V on a
subinterval [c, d] ⊂ [a, b] is

∥x∥p,[c,d] =

(
sup
D⊂[c,d]

∑
ti∈D

∥∥xti+1
− xti

∥∥p)1/p

,

where ∥ · ∥ is any norm on V and D consists all increasing and finite sequences on [c, d]. We denote
Cp([a, b], V ) the space of paths x such that it has finite p-variation on [a, b], i.e. Cp([a, b], V ) ={
x : [a, b] → V s.t. ∥x∥p,[a,b] < ∞

}
. The notation of Cp([a, b], V ) will be simplified to Cp(V ) as a

short-hand notation. We say x has bounded variation if x ∈ C1(V ).

In this thesis, to guarantee the existence of iterated integrals defined later [4], we will assume
paths are in Cp(V ) for 1 ≤ p < 2.
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1.1.2 Signatures of a path

With basic knowledge of paths, now we define signatures of a path based on [5] by iterated integrals.
Let a path x ∈ Cp(V ) for 1 ≤ p < 2 with the i-th coordinate path xi

t. We define

S(x)ia,t =

∫
a<s<t

dxi
s = xi

t − xi
a, (1.1.1)

which can be interpreted as the increment of the i-th coordinate path from a to t. In this case,
one can observe that S(x)ia,t is similar to xi as they are both 1-dimensional real-valued paths. By

collecting all possible terms of S(x)ia,t in order, we define

S(x)
(1)
a,t = (S(x)ia,t : i ∈ {1, . . . , d}) ∈ V.

Now we can define the double-iterated integral for any pair of indices i, j ∈ {1, . . . , d} as

S(x)i,ja,t =

∫
a<s<t

S(x)ia,sdx
j
s =

∫
a<s<t

∫
a<r<s

dxi
rdx

j
s :=

∫
a<r<s<t

dxi
rdx

j
s, (1.1.2)

where S(x)ia,s is defined previously in (1.1.1) and a < r < s < t is a short-hand notation of two

intervals with respect to r and s. Given S(x)ia,s and xj
s as 1-dimensional path, S(x)i,ja,t is also a

1-dimensional path. Likewise, the collection of all double-iterated integrals can be defined as

S(x)
(2)
a,t = (S(x)i,ja,t : i, j ∈ {1, . . . , d}) ∈ V ⊗2,

where V ⊗2 := V × V . Similarly, we can define triple-iterated integral for any combination of
i, j, k ∈ {1, . . . d} by double-iterated integral (1.1.2)

S(x)i,j,ka,t =

∫
a<s<t

S(x)i,ja,sdx
k
s =

∫
a<w<r<s<t

dxi
wdx

j
rdx

k
s ,

which can also be viewed as a 1-dimensional path integral. We also collect all triple-iterated
integrals

S(x)
(3)
a,t = (S(x)i,j,ka,t : i, j, k ∈ {1, . . . , d}) ∈ V ⊗3.

In this case, we can generalise it to n-fold iterated integral as below. For any combination of
i1, . . . , in ∈ {1, . . . d},

S(x)i1,...,ina,t =

∫
a<tn<t

S(x)
i1,...,in−1

a,tn dxin
tn =

∫
a<t1<···<tn<t

dxi1
t1 . . . dx

in
tn .

Inductively, one can see that the n-fold iterated integral is also a 1-dimensional real-valued path.
Collection of all n-fold iterated integrals gives

S(x)
(n)
a,t = (S(x)i1,...,ina,t : i1, . . . , in ∈ {1, . . . , d}) ∈ V ⊗n. (1.1.3)

Definition 1.1.2 (signature). Let a path x ∈ Cp(V ) for 1 ≤ p < 2. The signature S(x)a,b of x is
the infinite collection of all iterated integrals of x on [a, b]

S(x)a,b = (1, S(x)
(1)
a,b, S(x)

(2)
a,b, S(x)

(3)
a,b, . . . , S(x)

(n)
a,b , . . . ) ∈

∞∏
n=0

V ⊗n, (1.1.4)

where S(x)
(0)
a,b = 1 ∈ V ⊗0 and V ⊗0 := R by convention and S(x)

(n)
a,b defined in (1.1.3) is usually

called as the n-th level signature.

In other words, the signature is an infinite and real-valued sequence containing information
about all folds of iterated integrals. In the real world, we will only get a finite resolution of
signatures. Then we say the signature up to the n-th level is n-step truncated signature Sn(x)a,b,
denoted by

Sn(x)a,b = (1, S(x)
(1)
a,b, S(x)

(2)
a,b, S(x)

(3)
a,b, . . . , S(x)

(n)
a,b , 0, 0, · · · ) ∈

∞∏
k=0

V ⊗k.

Now we will demonstrate the definition of the signature by following two examples.
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Example 1.1.1 (Signature for 1-dimensional paths[5]). Consider an arbitrary 1-dimensional path
x ∈ Cp(R) for 1 ≤ p < 2 and let x = xt, the signature of the path is

S(x)a,b = (1, S(x)1a,b, S(x)
1,1
a,b, S(x)

1,1,1
a,b , . . . ),

where

S(x)1a,b =

∫
a<s<b

dxs = xb − xa

S(x)1,1a,b =

∫
a<r<s<b

dxrdxs =

∫
a<s<b

(xs − xa)dxs =
1

2
x2
s − xaxs

∣∣∣∣xb

xa

=
(xb − xa)

2

2!

S(x)1,1,1a,b =

∫
a<w<r<s<b

dxwdxrdxs =

∫
a<s<b

(
1

2
x2
s − xaxs)dxs =

1

6
x3
s −

1

2
xax

2
s

∣∣∣∣xb

xa

=
(xb − xa)

3

3!
.

With a bit more algebraic work, one can show that

S(x)

n︷ ︸︸ ︷
1, 1, . . . , 1 =

(xb − xa)
n

n!
.

It is an interesting result, as we can conclude that the information stored in the signature of 1-
dimensional paths is no more than the increment of paths xb − xa.

Example 1.1.2 (Geometric interpretation of a 2-dimensional path). Consider a path x̂ ∈ C1([0, 9],R2),
where x̂ = (x1

t , x
2
t ) = (t, x(t)). Here x(t) is defined as

x2
t = x(t) =


√
3t t ∈ [0, 2]

2
√
3 t ∈ [2, 8]√

3t− 6
√
3 t ∈ [8, 9]

,

which is continuous and piece-wise differentiable. In this case, ẋ1
t = 1 and ẋ2

t can be expressed as

ẋ2
t = ẋ(t) =


√
3 t ∈ (0, 2)

0 t ∈ (2, 8)√
3 t ∈ (8, 9)

.

0 2 4 6 8

x1
t = t

0

1

2

3

4

5

x2 t

(0, 0)

(2, 2 3)

(8, 2 3)

(9, 3 3)

x1
t

x2
tA

A +

Figure 1.1: Path in Example 1.1.2 shaded by signed Lévy area

Then one can compute the signature of the path

S(x)0,9 = (1, S(x)
(1)
0,9, S(x)

(2)
0,9, S(x)

(3)
0,9, . . . , S(x)

(n)
0,9 , . . . )

= (1, S(x)10,9, S(x)
2
0,9, S(x)

1,2
0,9, S(x)

2,1
0,9, S(x)

1,1,1
0,9 , . . . ),
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where

S(x)10,9 =

∫
0<s<9

dx1
s = x1

9 − x1
0 = 9

S(x)20,9 =

∫
0<s<9

dx2
s = x2

9 − x2
0 = 3

√
3

S(x)1,10,9 =

∫
0<r<s<9

dx1
rdx

1
s =

∫
0<s<9

x1
sdx

1
s =

1

2

(
x1
s

)2∣∣∣∣9
0

=
81

2

S(x)1,20,9 =

∫
0<r<s<9

dx1
rdx

2
s =

∫
0<s<9

sdx2
s =

∫
0<s<9

sẋ2
sds =

√
3

2
s2
∣∣∣∣2
0

+

√
3

2
s2
∣∣∣∣9
8

=
21

2

√
3

S(x)2,10,9 =

∫
0<r<s<9

dx2
rdx

1
s =

∫
0<s<9

x2
sds =

√
3

2
s2
∣∣∣∣2
0

+ 2
√
3s

∣∣∣∣8
2

+

√
3

2
s2 − 6

√
3s

∣∣∣∣9
8

=
33

2

√
3

S(x)2,20,9 =

∫
0<r<s<9

dx2
rdx

2
s =

∫
0<s<9

x2
sdx

2
s =

1

2

(
x2
s

)2∣∣∣∣9
0

=
27

2
.

From Figure 1.1, let A− and A+ represent the signed value of the shaded region, signed Lévy area
of the path is defined as A− +A+. In this case, the signed Lévy area is −3

√
3. Surprisingly,

1

2

(
S(x)1,20,9 − S(x)2,10,9

)
=

1

2

(
21

2

√
3− 33

2

√
3

)
= −3

√
3 = A− +A+,

which is exactly the signed Lévy area [5]! From the example, we could then taste a bit of the
richness of underlying geometric properties encoded in the signature of a path.

1.1.3 Tensor algebra

Recall that signature (1.1.4) is defined in space
∏∞

n=0 V
⊗n based on an infinite collection of iterated

integrals. To have the structure of an algebra on the space, we will introduce the algebra of formal
power series.

Definition 1.1.3 (Formal power series [5]). Let e1, · · · , ed be d formal indeterminates. The algebra
of non-commuting formal power series in d indeterminates is the vector space of all series of the
form

∞∑
n=0

∑
i1,...,in∈{1,...d}

λi1,...,inei1 , · · · , ein ,

where λi1,...,in ∈ R and an element ei1 , · · · , ein is called monomials.

Note that the non-commutativity of power series emphasises that different orders of indeter-
minates would be distinct monomials; for example, e1e2e3, e2e1e3 and e3e2e1 are all different. To
define the space of formal power series as a vector space, one can define addition and scalar multi-
plication of formal power series by changing the corresponding coefficient of elements. Moreover,
by defining the tensor product, the space of formal power series equipped with the product is an
algebra [5], denoted by T ((V )), where tensor algebra is its subalgebra.

Definition 1.1.4 (tensor product). Given monomials ei1 , · · · , ein and ej1 , · · · , ejk , we define tensor
product ⊗ between monomials by concatenating monomials with current order

ei1 , · · · , ein ⊗ ej1 , · · · , ejk = ei1 , · · · , einej1 , · · · , ejk .

More generally, if we have two formal power series w and v, then

w ⊗ v =

 ∞∑
n=0

∑
i1,...,in∈{1,...d}

wi1,...,inei1 , · · · , ein

⊗

 ∞∑
n=0

∑
i1,...,in∈{1,...d}

vi1,...,inei1 , · · · , ein


= w0v0 +

d∑
i=1

(w0vi + wiv0)ei +

d∑
i,j=1

(w0vi,j + wivj + wi,jv0)eiej + · · ·

8



Interestingly, the indexing strategy of formal power series resembles that of signatures. One can
see that the formal power series provides a useful way to express signatures of a path x ∈ Cp(V )
where 1 ≤ p < 2

S(x)a,b =

∞∑
n=0

∑
i1,...,in∈{1,...d}

S(x)i1,...,ina,b ei1 , · · · , ein .

The representation of the signature as a formal power series is a powerful and convenient tool
in mathematical analysis, as we can apply the property of formal power series and simplify the
computation of signatures.

Example 1.1.3 (Signatures of linear paths [4, 6]). Suppose there is a linear path x ∈ C1(V ). Then
the path x is linear in terms of t, i.e.

xt = xa +
t− a

b− a
(xb − xa) .

It follows that its derivative can be written as

dxt =
(xb − xa)

b− a
dt.

Then recall the definition of signatures, it holds that

S(x)i1,...,ina,b =

∫
a<t1<···<tn<b

dxi1
t1 . . . dx

in
tn

=

∏n
k=1

(
xik
b − xik

a

)
(b− a)n

∫
a<t1<···<tn<b

dt1 . . . dtn

=

∏n
k=1

(
xik
b − xik

a

)
(b− a)n

(b− a)n

n!

=

∏n
k=1

(
xik
b − xik

a

)
n!

.

Therefore, the n-fold iterated integral thus the whole signatures can be expressed in terms of formal
power series as

S(x)
(n)
a,b =

(xb − xa)
⊗n

n!

S(x)a,b =

∞∑
n=0

(xb − xa)
⊗n

n!
:= exp⊗ (xb − xa) .

After introducing Chen’s identity in Theorem 1.3.2 later, we will demonstrate how it is powerful
in computing signatures.

1.2 Analytical properties

Now we will review several important properties of signatures. From those analytical properties,
one should see why the signature is a good candidate for representing a path.

1.2.1 Injectivity

The first property shows that signature is characteristic for determining a path. KT Chen [7] first
showed that non-commutative iterated integrals are faithful to their irreducible piece-wise regular
continuous path. Then, the condition was extended to continuous paths of bounded variation by
Hambly and Lyons [8], where the signature determines a path x up to tree-like equivalence. A
further extension to less irregular paths can be found in [9], which generalised the tree-like notion
to weakly geometric rough paths.

Definition 1.2.1 (Tree-like equivalence [3]). For paths x, y ∈ Cp(V ) and 1 ≤ p < 2, S(x)a,b =
S(y)a,b if and only if x ∼τ y, where ∼τ denotes tree-like equivalence.
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Theorem 1.2.2 (Injectivity of signatures [9]). For 1 ≤ p < 2, the signature map S : Cp(V ) →
T ((V )) is injective up to tree-like equivalence.

Informally, tree-like equivalence on the space of paths with continuous bounded variation can
be treated as a dimension reduction of paths with the same parameterisation, where the space with
reduction is called unparameterised paths.

Definition 1.2.3 (Unparameterised paths [10]). For x ∈ Cp(V ) and 1 ≤ p < 2, the ∼τ equivalence
class of x is denoted by [x]. The space of p-unparameterised paths Cp(V ) is defined as the quotient
space Cp(V )/ ∼τ= {[x] : x ∈ Cp(V )}.

Remark 1.2.4. If a path x has at least one monotone coordinate, [x] collapses to a single point,
i.e. [x] = {x}. Therefore, the signature uniquely determines the path x. One can further conclude
that time-augmented paths have unique signatures.

1.2.2 Invariance under time reparameterisations

If a function ϕ : [c, d] → [a, b] is surjective, non-decreasing and continuously differentiable, we
define ϕ as a reparameterisation. For example, ϕ(x) = x2 for x ∈ [0, 1] is a reparameterisation that
is slower at first and then goes quicker than the original parameterisation.

To demonstrate the idea of invariance, Let us restrict paths x, y : [a, b] → R to be continuous
and differentiable, and define the reparameterisation as x̃t = xϕ(t), ỹt = yϕ(t). By the chain rule,

˙̃xt = ϕ̇(t)ẋϕ(t).

The path integral on x̃t can be expressed as∫ d

c

ỹtdx̃t =

∫ b

a

yϕ(t)ϕ̇(t)ẋϕ(t)dt =

∫ b

a

yudxu,

which shows that the path integral is invariant under reparameterisation. Since the signature of a
d-dimensional path x̂ is defined by its coordinate iterated integrals, inductively, one can see that
the signature of a path and its reparameterisation is the same, i.e. S(x̂t)a,b = S(x̂ϕ(t))a,b. This
means that if one traverses the same path but changes the speed or pacing, the signature remains
the same. More generally, one can show that the restriction of differentiability is unnecessary.
Reparameterisation invariance also holds for x ∈ Cp(V ), where 1 ≤ p < 2 [4]. From the property
of invariance under reparameterisation, the signature is not determined by the recording time of
each sample but concentrates on the structure and geometry of the path itself.

1.2.3 Factorial Decay

Lastly, we will present a quantitative result of the magnitude of the signature at each level with
respect to the length of paths.

Theorem 1.2.5 (Factorial decay [4, 11]). Consider x ∈ C1(V ) is a continuous path with signature
S(x)a,b and 1-variation ∥x∥1,[a,b]. Then for every n ∈ N, we have

∥Sn(x)a,b∥V ⊗n ≤
∥x∥n1,[a,b]

n!
. (1.2.1)

Theorem 1.2.5 shows terms of signature decay in a factorial way, illustrating the most significant
information is contained in the first few levels of signature. The property of factorial decay justifies
we can characterise a path approximately by a truncated level of signature, which is widely used
in applications.

1.3 Algebraic properties

Algebraic properties make the signature a powerful tool for understanding the geometry and dy-
namics of paths. In this section, we will briefly introduce the signature’s ability to encode and
manipulate the composition, order, and complex interactions of paths.
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1.3.1 Chen’s identity

Chen’s identity is one of the most fundamental algebraic properties of signature as it describes the
behaviour of signature under the concatenation of paths.

Definition 1.3.1 (Concatenation). Consider paths x ∈ Cp([a, b], V ) and y ∈ Cp([b, c], V ) for
1 ≤ p < 2, we define the concatenation of x and y, denoted by x ∗ y as a path [a, c] → V

(x ∗ y)t :=

{
xt if a ≤ t ≤ b

xb − yb + yt if b ≤ t ≤ c
.

Now we will present Chen’s identity, which intuitively set an equivalence relation between the
concatenation of paths and the tensor product of signatures.

Theorem 1.3.2 (Chen’s identity). Consider paths x ∈ Cp([a, b], V ) and y ∈ Cp([b, c], V ) for
1 ≤ p < 2. Then

S(x ∗ y)a,c = S(x)a,b ⊗ S(y)b,c.

The theorem provides a method to simplify the analysis of longer paths by converting them
into manageable shorter ones. If we have a path x : [t0, tn] → Rd under regularity conditions, then
inductively, we can decompose the signature of x to

S(x)t0,tn = S(x)t0,t1 ⊗ S(x)t1,t2 ⊗ · · · ⊗ S(x)tn−1,tn .

Moreover, if we have a sequence of data (ti, xi) ∈ Rd+1, we can treat x as a piecewise linear path
interpolating the data [4, 6]. Based on Example 1.1.3, one can observe that

S(x)t0,tn = exp⊗ (xt1 − xt0)⊗ exp⊗ (xt2 − xt1) · · · exp⊗
(
xtn − xtn−1

)
,

which is widely used in Python packages such as ESig [12]. In this case, n-step truncated signatures
can be computed by the tensor product up to monomials with order n.

1.3.2 Shuffle product

Apart from the tensor product, we can also equip space of formal power series with shuffle product
to form Lie algebra [5, 10]. Given a word I = (i1, · · · , in) ∈ {1, · · · , d}n, informally, it can be
viewed as the index of an element of signatures.

Sa,b(x)
I := Sa,b(x)

i1,··· ,in .

Recall signatures of a path are defined by iterated integrals. We can treat I as a linear functional
on T ((V ))∗, where T ((V ))∗ is the dual space of T ((V )).

Sa,b(x)
I = (I, Sa,b(x)) . (1.3.1)

With the basic setup above, the definition of the shuffle product will be introduced below.

Definition 1.3.3 (shuffle product [6]). Consider two words I = (i1, · · · , in) and J = (j1, · · · jp).
the shuffle product � is defined by

I � J :=
∑

σ∈Shuff(n,p)

(
aσ−1(1), · · · , aσ−1(n+p)

)
,

where (a1, · · · , an+p) := (i1, · · · , in, j1, · · · jp), and Sn contains all permutation of n elements,

Shuff(n, p) := {σ ∈ Sn+p : σ(1) < · · · < σ(n) and σ(n+ 1) < · · · < σ(n+ p)} .

Intuitively, one can think of it as shuffling two decks of cards together. Each deck represents
a word. When shuffling them together, we effectively combine the information from each word in
every possible order - capturing the higher-level details. From the definition, one can observe that
the shuffle product is commutative. Equipped with the shuffle product, the shuffle combination of
higher-level terms of signatures can be seen expressed by their products of lower-level terms, which
is called the shuffle identity.
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Theorem 1.3.4 (Shuffle identity [11]). Consider a path x ∈ Cp(V ) for 1 ≤ p < 2. For any word
I = (i1, · · · , in) ∈ {1, · · · , d}n and J = (j1, · · · jp) ∈ {1, · · · , d}p,

(I, S(x)a,b) (J, S(x)a,b) = (I � J, S(x)a,b) .

Example 1.3.1. Suppose a differentiable path x = (x1
t , x

2
t ) ∈ Cp(R2) and words I = 1, J = 2.

S(x)1a,bS(x)
2
a,b =

∫
a<t<b

dx1
t

∫
a<t<b

dx2
t

=

∫
a<t<b

ẋ1
tdt

∫
a<t<b

ẋ2
tdt

by parts
=

∫
a<t<b

S(x)2a,bẋ
1
tdt+

∫
a<t<b

S(x)1a,bẋ
2
tdt

= S(x)2,1a,b + S(x)1,2a,b.

By the shuffle identity, we have

S(x)1a,bS(x)
2
a,b = (1, S(x)a,b) (2, S(x)a,b)

= (1� 2, S(x)a,b)

= (12+ 21, S(x)a,b)

= S(x)1,2a,b + S(x)2,1a,b,

which is exactly the same as what we derived via integration by parts! Indeed, shuffle products over
iterated integrals can be proved by this useful calculus tool [4].

Example 1.3.2. Consider a path x = (x1
t , x

2
t , x

3
t ) ∈ C1(R3) and words I = 321, J = 1. By the

shuffle identity, we have

S(x)3,2,1a,b S(x)1a,b = (321, S(x)a,b) (1, S(x)a,b)

= (321� 1, S(x)a,b)

= (1321+ 3121+ 23211, S(x)a,b)

= S(x)1,3,2,1a,b + S(x)3,1,2,1a,b + 2S(x)3,2,1,1a,b .

1.3.3 Time-reversal

Time-reversal property of signatures explains the inverse relation of signatures under tensor product
⊗ between a path and its time-reversal path.

Definition 1.3.5 (time-reversal). Consider a path x ∈ Cp([a, b], V ), the time-reversal path is

defined by
←
x ∈ Cp([a, b], V ) such that

←
xt = xa+b−t for all t ∈ [a, b].

Intuitively, one can think of a time-reversal path as the path flipping the start and end points.

Theorem 1.3.6 (Time-reversed signatures). Consider a path x ∈ Cp(V ) for 1 ≤ p < 2 and its

time-reversal path
←
x , then

S(x)a,b ⊗ S(
←
x)a,b = 1,

which is the identity of formal power series, where all monomial terms have zero coefficients.

Recall Chen’s identity in Theorem 1.3.2, one can intuitively treat the tensor product between
signatures as a concatenation of path and its reverse. In this case, the concatenation result could
be viewed as a path that is not moving. The time-reversal property is important as it provides
insight for studying the reverse pattern and its relationship with the original path.

1.3.4 Universality

The final important property emphasises that signature linearises continuous functions of an un-
parameterised path x ([3, 10, 13, 14]).
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Theorem 1.3.7 (Universality). Let Cp(V ) denotes the space of unparameterised paths and 1 ≤
p < 2. Consider a compact set X ⊂ Cp(V ) and an arbitrary continuous function f : X → R. Then
for any ϵ > 0, there exists a truncation level n ∈ N and αJ ∈ R,

sup
x∈X

∣∣∣∣∣∣f(x)−
n∑

k=0

∑
J∈{1,··· ,d}k

αJS(x)
J

∣∣∣∣∣∣ < ϵ.

Sketch proof [4]. Let C(X ) be the space of continuous functions over X with sup-norm topology.
Consider the subset of C(X )

AX := {[x] → (I, S(x)) : x ∈ X , I ∈ T ((V ))∗}
:= {ΦI : I ∈ T ((V ))∗} .

The strategy of the sketch proof is first showing that AX is a subalgebra of C(X ) with certain
properties, and then proving that AX is dense by Stone-Weierstrass theorem.

For I, J ∈ T ((V ))∗, ΦI ,ΦJ ∈ AX . Let λ ∈ R be a scalar, by definition of AX , we have that
ΦI + ΦJ = ΦI+J and ΦλI = λΦI . From shuffle identity in 1.3.4, ΦIΦJ = ΦI�J ∈ AX , thus
AX is closed under the pointwise product. Let i be the linear functional such that (i, S(x)) = 1
for extracting the 0-th level of signature. Then Φλi ≡ λ and AX contains all constant functions.
As (I, S(x)) = (I, S(y)) if and only if S(x) = S(y), followed by injectivity of S up to tree-like
equivalence in 1.2.2, AX separates points in X ⊂ Cp(V ).

Now we have shown that AX is a subalgebra of C(X ) that contains constant functions and sepa-
rates points. Applying the Stone-Weierstrass theorem, AX is dense, which implies the universality
property.

Theorem 1.3.7 shows that the linear combination of elements in the signature of paths can
approximate continuous mappings of the paths in arbitrary precision uniformly. This is a funda-
mental result for inversion, as we shall see later that universality guarantees the existence of linear
functionals in the dual space T ((V ))∗.

1.4 Applications of signatures

The properties summarised above make signatures effective and efficient as features of the path.
In recent works, signatures are widely used as a tool for feature extraction, where the routine [5]
is normally

data → path → signatures → features

In this section, we aim to provide a very brief overview of its application for interested readers.
Machine learning is one of the main areas of applications, where features found from signatures

can be learned to summarise and generalise into new cases. In particular, the reparametrization
invariance of the signature is beneficial in machine learning tasks such as time series classification
and recognition tasks involving sequences, as it means features from signatures do not depend on
the specific timing of the observations in the time series. Take character recognition as an example,
combined with a convolutional neural network, the signatures method improved the accuracy of
Chinese character recognition [15], where valuable information was found in the first three levels of
signatures. A similar pattern is also shown in financial data [16], which demonstrates the sufficiency
of low levels of truncated signatures to make useful predictions. To model continuous-time time
series, one can compute neural controlled differential equations and rough differential equations
by learning from log signatures [17, 18]. Moreover, signatures can be also applied to the field of
bioinformatics for identifying disorders [5, 19, 20] and diseases in early stages [6, 21, 22].

In summary, the signature-based learning method has permeated numerous fields with its
unique and powerful approach to understanding sequential data. Despite the breadth of its cur-
rent applications, the full potential of the signature method remains to be fully explored and
understood.
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Chapter 2

Compositions of paths in bases

The universality of signatures in the last chapter of Theorem 1.3.7 provides a rich playground for
finding linear functionals that can direct to other characteristics of a path. For this purpose, we
will introduce orthogonal polynomials and the Fourier series.

2.1 Orthogonal polynomials

2.1.1 Inner product and orthogonality

Consider a dot product ⟨x,y⟩ :=
∑n

i=1 xiyi, where x,y ∈ Rn. If weights w1, · · · , wn ∈ R+ are
defined, ⟨x,y⟩w :=

∑n
i=1 wixiyi is measured as a weighted dot product, where ⟨·, ·⟩w can be written

as ⟨·, ·⟩ for simplicity. In general, we can extend the product for vector space V over F.

Definition 2.1.1 (inner product and inner product space). Let F = R or C and let V be a vector
space over F . An inner product ⟨u, v⟩ on V is a map V× V → F satisfying

(1) ⟨λ1v1 + λ2v2, u⟩ = λ1⟨v1, u⟩+ λ2⟨v2, u⟩,

(2) ⟨u, v⟩ = ⟨v, u⟩,

(3) ⟨v, v⟩ > 0 if v ̸= 0,

for all vi, v, u ∈ V and λi ∈ F . Then the inner product space is defined as the vector space V with
an inner product ⟨·, ·⟩.

For example, let dα be a non-negative Borel measure supported in the interval [a, b] and V =
L2
w(a, b). For p ∈ [1,∞), Lp

w(Ω) is the linear space of measurable functions from Ω to R such that
their weighted p-norms are bounded, i.e.

L2
w(Ω) =

{
v is measurable in Ω

∣∣∣∣ ∫
Ω

|v(t)|2w(t)dt < ∞
}
.

One can define ⟨f, g⟩ =
∫ b

a
f(t)g(t)dα(t) as a Stieltjes integral for all f, g ∈ V, which can be proved

as an inner product by the three properties in the Definition 2.1.1. Note that if α(t) is absolutely
continuous, which will be the setting throughout the report, then one can find dα(t) = w(t)dt [23].
In this case, the definition of inner product over function space reduces to an integral with respect
to a weight function, i.e.

⟨f, g⟩ =
∫ b

a

f(t)g(t)w(t)dt.

We can then refer an orthogonal polynomial system to orthogonal with respect to the weight
function w. From now on, we will stick to F = R and V = L2

w(Ω). P[x] ⊂ L2
w(Ω) denoted by the

space of all polynomials. For a polynomial p ∈ Pn[t] with degree n, it is monic if the coefficient of
the n-th degree is one.

Definition 2.1.2 (Orthogonality and orthogonal polynomials). For an arbitrary vector space V,
u and v are orthogonal if ⟨u, v⟩ = 0 with all u, v ∈ V. When V = P[t], a sequence of polynomials
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(or orthogonal polynomial system) (pn)n∈N ∈ P[t] is called orthogonal polynomials with respect to
a weight w if for all m ̸= n,

⟨pn, pm⟩ =
∫

pn(t)pm(t)w(t)dt = 0,

where deg(pn) = n is the degree of polynomial. Furthermore, we say the sequence of orthogonal
polynomials is orthonormal if ⟨pn, pn⟩ = 1 for all n ∈ N.

For simplification, inner product notation ⟨·, ·⟩ will be used without specifying the integral
formulation for orthogonal polynomial. To construct a sequence of orthogonal polynomials in
Definition 2.1.2, one can follow the Gram-Schmidt orthogonalisation process, which is stated and
proved below.

Theorem 2.1.3 (Gram-Schmidt orthogonalisation process (Thm. 2.1 in [24])). The polynomial
system (pn)n∈N can be constructed recursively by

p0 = 1, pn = tn −
n−1∑
i=1

⟨tn, pi⟩
⟨pi, pi⟩

pi for n ≥ 1 (2.1.1)

is a monic orthogonal polynomial system with respect to the inner product ⟨·, ·⟩.

Proof. We will prove it by induction. Given F = R, the inner product is symmetric, then it is
sufficient to prove

⟨pn, pm⟩ = 0, ∀n ≥ 1, 0 ≤ m ≤ n− 1. (2.1.2)

Now consider the base case n = 1, the relation from (2.1.2) gives

⟨p1, p0⟩ =
〈
t− ⟨t, p0⟩

⟨p0, p0⟩
p0, p0

〉
= ⟨t, p0⟩ −

⟨t, p0⟩
⟨p0, p0⟩

⟨p0, p0⟩ = 0,

which shows p0 and p1 are orthogonal. In the inductive step, let us assume the relation from (2.1.2)
holds true up to n ≥ 1. In the case of pn+1, for 0 ≤ m ≤ n,

⟨pn+1, pm⟩ =

〈
tn+1 −

n∑
i=1

⟨tn+1, pi⟩
⟨pi, pi⟩

pi, pm

〉

= ⟨tn+1, pm⟩ −
n∑

i=1

⟨tn+1, pi⟩
⟨pi, pi⟩

⟨pi, pm⟩

= ⟨tn+1, pm⟩ − ⟨tn+1, pm⟩
⟨pm, pm⟩

⟨pm, pm⟩

= 0,

where we have used the properties of the inner product and orthogonality of pm and pi for 0 ≤ i ≤ n
and i ̸= m.

From the orthogonalisation process in Theorem 2.1.3, we can see that the n-th polynomial pn
has degree n exactly, which means (pn)n∈N is a basis spanning P[t]. Furthermore, the orthogonal
construction makes the orthogonal polynomial system an orthogonal basis with respect to the
corresponding inner product. The following proposition forms an explicit expression of coefficients
of (pk)k∈{0,··· ,n} for an arbitrary n-th degree polynomials.

Proposition 2.1.4 (Orthogonal polynomials expansion). Consider an arbitrary polynomial x(t) ∈
Pn[t], then one can express x(t) by a sequence of orthogonal polynomials (pk)k∈{0,··· ,n}, i.e.

x(t) =

n∑
k=0

⟨pk, x⟩
⟨pk, pk⟩

pk(t).

Proof. Since (pk)k∈{0,··· ,n} is a basis of Pn[t], x(t) can be written as a linear combination of the
sequence of polynomial

x(t) =

n∑
k=0

αx
kpk(t).
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By applying the inner product with pi on both sides, we get

⟨pi, x⟩ =

〈
pi,

n∑
k=0

αx
kpk

〉
=

n∑
k=0

αx
k⟨pi, pk⟩ = αx

i ⟨pi, pi⟩,

where we used orthogonality of pi and pk for i ̸= k. Therefore, the k-th coefficient is

αx
k =

⟨pk, x⟩
⟨pk, pk⟩

=
1

⟨pk, pk⟩

∫
x(t)pk(t)w(t)dt. (2.1.3)

Remark 2.1.5. We have proved the orthogonal polynomial expansion for x ∈ Pn[t]. In general,
by the closure of orthogonal polynomials system in L2

w(a, b) [23], arbitrary f ∈ L2
w(a, b) can be

written as an infinite sequence of orthogonal polynomials.

f(t) ∼
∞∑
k=0

⟨pk, f⟩
⟨pk, pk⟩

pk(t).

The N -th degree approximation of f is the best approximating polynomial [25] with degree less or
equal to N , denoted by

PNf(t) =

N∑
k=0

⟨pk, f⟩
⟨pk, pk⟩

pk(t). (2.1.4)

Linear functional on orthogonal polynomials

Recall linear functional on a vector space V is a linear map L : V → F such that

L(α1v1 + α2v2) = α1L(v1) + α2L(v2).

In the setting of orthogonal polynomials, the process of extracting the k-th coefficient can be
defined as Lk(x) = αx

k for x ∈ L2
w.

Proposition 2.1.6. Lk(x) = αx
k is a linear functional with respect to a given orthogonal polyno-

mials system (pn)n∈N.

Proof. Choose x1(t), x2(t) ∈ L2
w and c1, c2 ∈ R in arbitrary. By the coefficient of orthogonal

polynomials in (2.1.3),

Lk(c1x1 + c2x2) =
⟨pk, c1x1 + c2x2⟩

⟨pk, pk⟩
=

c1⟨pk, x1⟩+ c2⟨pk, x2⟩
⟨pk, pk⟩

= c1L(x1) + c2L(x2),

which is followed by the Definition 2.1.1 of the inner product.

2.1.2 Basic properties

There are many important properties of orthogonal polynomials, such as three terms recurrence
relation, Christoffel–Darboux formula and zeros, which are widely used in fields like approximation
and differential equations [23]. Here we will list two main properties that are significant for our
application purpose.

The three-term recurrence relation

Theorem 2.1.7 (Three-term recurrence relation). An orthogonal polynomials system (pn)n∈N with
respect to a measure dα satisfies the three-term recurrence relation.

p0(t) = 1, p1(t) = A1t+B1, pn+1(t) = (An+1t+Bn+1)pn(t) + Cn+1pn−1(t),

for all n ∈ N, and Ai > 0 for all i ∈ N0.

Before proving the recurrence relation, we will first show that an orthogonal polynomial is
orthogonal to all polynomials with a degree lower than that of itself.
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Lemma 2.1.8. A polynomial q(t) ∈ Pn[t] satisfying ⟨q, r⟩ = 0 for all r(t) ∈ Pm[t] with m < n
if and only if q(t) = pn(t) up to some constant coefficient, where pn(t) denotes the orthogonal
polynomial with degree n.

Proof. =⇒: Consider q(t) = αnt
n +O(tn−1) and pn(t) = α̃nt

n +O(tn−1). Then we define

s(t) = q(t)− αn

α̃n
pn(t) = O(tn−1),

which has a degree at most n− 1. Therefore, for all m < n,

⟨s, pm⟩ = ⟨q, pm⟩ − αn

α̃n
⟨pn, pm⟩ = 0.

The former inner product ⟨q, pm⟩ = 0 by assumption, while the latter inner product ⟨pn, pm⟩ = 0
by orthogonality. By Proposition 2.1.4,

s(t) =

n−1∑
m=0

⟨pm, s⟩
⟨pm, pm⟩

pm(t) = 0 =⇒ q(t) =
α̃n

αn
pn(t).

⇐=: Consider r(t) =
∑m

k=0 rkpk(t). Let q(t) = cpn(t) by assumption, then for all m < n,

⟨q, r⟩ =

〈
cpn(t),

m∑
k=0

rkpk(t)

〉
= c

m∑
k=0

rk⟨pn(t), pk(t)⟩ = 0,

where we used the linearity of the inner product and orthogonality of (pn)n∈N.

Now we have enough tools to prove the famous three-term recurrence relation.

Proof of Theorem 2.1.7. Consider a sequence of orthogonal polynomials (pn)n∈N. When n = 1, p1
can be expressed as A1t + B1 for A1, B1 ∈ R. This is because p1 is an element in an orthogonal
basis with degree 1. Based on the inner product of orthogonal polynomials,

⟨pk, tpn⟩ =
∫

tpk(t)pn(t)w(t)dt = ⟨tpk, pn⟩.

Therefore, for 0 ≤ k < n− 1, we have ⟨pk, tpn⟩ = 0 by Lemma 2.1.8. Since tpn(t) has degree n+1,
by Proposition 2.1.4,

tpn(t) =

n+1∑
k=0

⟨pk, tpn⟩
⟨pk, pk⟩

pk(t) =

n+1∑
k=n−1

⟨pk, tpn⟩
⟨pk, pk⟩

pk(t) = αn−1pn−1(t) + αnpn(t) + αn+1pn+1(t)

=⇒ pn+1 =

(
1

αn+1
t− αn

αn+1

)
pn(t)−

αn−1

αn+1
pn−1(t),

which completes the proof.

Remark 2.1.9. Among all other properties, recurrence is the core property of orthogonal polyno-
mials in our setting, as one can find higher-order coefficients based on lower-order coefficients given
the analytical form of the orthogonal polynomials. This idea coincides with the shuffle identity
of signatures in 1.3.4. As we shall see later, one can construct an explicit recurrence relation for
coefficients of orthogonal polynomials by linear functionals acting on signatures.

Approximation results for functions in L2
w

Without loss of generality, consider f ∈ L2
w(−1, 1), as we can always transform an arbitrary interval

[a, b] linearly into the interval [−1, 1]. Recall the N -th degree approximation PNf(t) defined in
(2.1.4). The uniform convergence of the N -th degree approximation PNf(t) to f can be found in
[25], where we obtain

1√
2π

∥f − PNf∥2 ≤ ∥f − PNf∥∞ ≤ (1 + ∥PN∥)∥f − q∥∞, q ∈ PN ,
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where ∥PN∥ relates to the system of orthogonal polynomials, and ∥f−q∥∞ depends on the smooth-
ness k of f . In the case of Chebyshev polynomials, where the weight function is w(t) = 1/

√
1− t2,

∥PN∥ = 4
π log n+O(1) [25]. For some α ∈ (0, 1],

∥f − PNf∥2 ≤ ck
logN

Nk+α
for N ≥ 2.

The bound result is shown numerically in Figure 2.1. The orthogonal polynomials closely resemble
the original paths x1 and x2, which demonstrates good convergence results. On the other hand,
the orthogonal polynomials generalise the general trend of x3 but fail to approximate the non-
differentiable points.
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Figure 2.1: Approximation (left) and convergence of L2 error (right) results for Chebyshev poly-
nomials by increasing degree N , where their colours change from blue to red in the left plots;
paths are given by (from top to bottom): x1(t) = cos(10t) − sin(2πt), x2(t) = sin(10t) + e2t − t,
x3(t) = 2|2t− 1| − 1

2.1.3 Examples

In this subsection, we will provide two general orthogonal polynomials, namely Jacobi polynomials
and Hermite polynomials, which will be set as a comparison in the next chapter. Figure 2.2
visualises one case for each of the first few polynomials of these two kinds, where one can see that
different weight functions would lead to different behaviours of orthogonal polynomials.

Jacobi polynomials

Jacobi polynomials p
(α,β)
n are a system of orthogonal polynomials with respect to the weight func-

tion w : (−1, 1) → R such that

w(t;α, β) := (1− t)α(1 + t)β .

There are many well-known special cases of Jacobi polynomials, such as Legendre polynomials

p
(0,0)
n and Chebyshev polynomials p

(−1/2,−1/2)
n . In general, the analytical expression of Jacobi
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Figure 2.2: Visualisation of first 7 Legendre and Hermite polynomials

polynomials [26] is defined by the hypergeometric function 2F1:

p(α,β)n (t) =
(α+ 1)n

n!
2F1(−n, 1 + α+ β + n;α+ 1;

1

2
(1− t)),

where (α+ 1)n is Pochhammer’s symbol. For orthogonality, Jacobi polynomials satisfy∫ 1

−1
(1− t)α(1 + t)βp(α,β)m (t)p(α,β)n (t) =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ α+ β + 1)n!
δnm, α, β > −1,

where δmn is the Kronecker delta. For fixed α, β, the recurrence relation of Jacobi polynomial is

p(α,β)n (t) =
2n+ α+ β − 1

2n(n+ α+ β)(2n+ α+ β − 2)

(
(2n+ α+ β)(2n+ α+ β − 2)t+ α2 − β2

)
p
(α,β)
n−1 (t)

− (n+ α− 1)(n+ β − 1)(2n+ α+ β)

n(n+ α+ β)(2n+ α+ β − 2)
p
(α,β)
n−2 (t).

Hermite polynomials

Hermite polynomials H are a system of orthogonal polynomials with respect to the weight function
w : (−∞,∞) → R such that w(t) = exp(−t2/2). This is called probabilist’s Hermite polynomials,
which we will use throughout the thesis. There is another form called physicist’s Hermite poly-
nomials with respect to weight w(t) = exp(−t2). The explicit expression of probabilist’s Hermite
polynomials can be written as

Hn(t) = n!

⌊n2 ⌋∑
m=0

(
−1

2

)m
tn−2m

m!(n− 2m)!
,

with orthogonality property ∫ ∞
−∞

Hm(t)Hn(t)e
− t2

2 dt =
√
2πn!δmn. (2.1.5)

Lastly, we state the recurrence relation of Hermite polynomials as Hn+1(t) = xHn(t)− nHn−1(t).
Note that the weight of Hermite polynomials can be viewed as an unnormalised normal distribution.
If we are more interested in a particular region far away from the origin, we can define a ‘shift-
and-scale’ version of Hermite polynomials with respect to the weight

wt0,ϵ(t) = exp((t− t0)
2/2ϵ2),

where t0 denotes the new centre and ϵ measures standard deviation. Let (Ht0,ϵ
n )n∈N denotes the

shift-and-scale Hermite polynomials. Then the orthogonality property is∫ ∞
−∞

Ht0,ϵ
m (t)Ht0,ϵ

n (t)e−
(t−t0)2

2ϵ2 dt = ϵ

∫ ∞
−∞

Ht0,ϵ
m (t0 + ϵy)Ht0,ϵ

n (t0 + ϵy)e−
y2

2 dy,

by substitution y = (t− t0)/ϵ. Now we have the weight of Hermite polynomials. If

Ht0,ϵ
n (t0 + ϵy) = Hn(y), n ∈ N, (2.1.6)
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then (Ht0,ϵ
n )n∈N is an orthogonal polynomial system with orthogonality∫ ∞

−∞
Ht0,ϵ

m (t)Ht0,ϵ
n (t)e−

(t−t0)2

2ϵ2 dt = ϵ

∫ ∞
−∞

Hm(y)Hn(y)e
− y2

2 dy = ϵ
√
2πn!δmn,

which is followed by the orthogonality of Hermite polynomials in (2.1.5). Similarly, the connection
between Hermite and shift-and-scaled Hermite in (2.1.6) provides a way to find the explicit form
and recurrence relation of (Ht0,ϵ

n )n∈N, which are

Ht0,ϵ
n (t) = n!

⌊n2 ⌋∑
m=0

(
−1

2

)m
1

m!(n− 2m)!

(
t− t0
ϵ

)n−2m

(2.1.7)

Ht0,ϵ
n+1(t) =

1

ϵ
(t− t0)H

t0,ϵ
n (t)− nHt0,ϵ

n−1(t). (2.1.8)

Remark 2.1.10. Note that there are a simple expression of (Ht0,ϵ
n )n∈N at t = t0. One can easily

observe that

Ht0,ϵ
n (t0) =

{(
− 1

2

)n
2 n!

n
2 ! for even n

0 for odd n
.

2.2 Fourier series

Trigonometric series are also possible ways to represent a function. Here we only present a brief
introduction to the Fourier series, which highlights the main results that will be used later.

2.2.1 Trigonometric series

Let f ∈ L1(−π, π), The Fourier series of f is defined by

F (t) =
a0
2

+

∞∑
k=1

(ak cos(kt) + bk sin(kt)) ,

where

ak =
1

π

∫ π

−π
f(t) cos(kt)dx, k ≥ 0

bk =
1

π

∫ π

−π
f(t) sin(kt)dx, k ≥ 1,

which can be derived from the orthogonal bases {cos kt}k and {sin kt}k. More generally, we can
extend the period to 2l ∈ R and form exponential series [27]. For f ∈ L1(−l, l) and k ∈ Z,

F (t) =

∞∑
n=−∞

cke
i 2π

l kt, ck =
1

l

∫ l

0

f(t)e−i
2π
l ktdt. (2.2.1)

Linear functional on Fourier series

In the setting of the Fourier series, the process of extracting the k-th coefficient ck in the exponential
form can be defined as Lk(x) = cxk for x ∈ L1(−l, l).

Proposition 2.2.1. Lk(x) = cxk is a linear functional on the space of Fourier series.

Proof. Choose x1(t), x2(t) ∈ L1(−l, l) and α1, α2 ∈ R in arbitrary. By the coefficient of Fourier
series in (2.2.1),

Lk(α1x1 + α2x2) =
1

l

∫ l

0

(α1x1 + α2x2)(t)e
−i 2π

l ktdt

=
α1

l

∫ l

0

x1(t)e
−i 2π

l ktdt+
α2

l

∫ l

0

x2(t)e
−i 2π

l ktdt

= α1Lk(x1) + α2Lk(x2).

which is followed by the linearity of integration.
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2.2.2 Convergence

Note that F (t) and f(t) are closely related. Under some regularity conditions, F (t) converges to
f(t). But in other cases, F (t) may not converge to f(t) or even a limit [25]. To examine the
convergence of the Fourier series, we define the partial sum of the Fourier series as

SNf(t) =
a0
2

+

N∑
k=1

(ak cos(kt) + bk sin(kt)) .

Now we present pointwise convergence and uniform convergence results [25, 28] of the Fourier series
for various functions.

Theorem 2.2.2 (Pointwise convergence for bounded variation). For 2π-periodic functions of
bounded variation on [−π, π], its Fourier series at arbitrary t converges to

1

2

(
f(t−) + f(t+)

)
.

Theorem 2.2.3 (Uniform convergence for piecewise smooth functions). If f is a 2π-periodic
piecewise smooth function,

(a) if f is also continuous, then the Fourier series converges uniformly and continuously to f ;

(b) if f is not continuous, then the Fourier series converges uniformly to f on every closed
interval without discontinuous points.

Theorem 2.2.4 (Uniform error bounds). Let f ∈ Ck,α
p (2π) be a 2π-periodic k-th continuously

differentiable function that is Hölder continuous with the exponent α ∈ (0, 1]. Then the 2-norm
and infinity-norm bound of a partial sum can be expressed as

1√
2π

∥f − SNf∥2 ≤ ∥f − SNf∥∞ ≤ ck
logN

Nk+α
, for N ≥ 2.

For functions only defined in an interval [a, b], we can always shift and extend them to be
2π-periodic functions. These theorems guarantee the convergence of common functions we will
use in later experiments. To illustrate, Figure 2.3 shows how convergence theories match with
numerical results. Compared with the path x2(t) = sin(10t) + e2t − t, the other 2 paths have
better convergence generally. The main reason is that the Fourier series of x2 at t = ±1 does
not pointwise converge to x2(±1). Since the Fourier series treats the interval [−1, 1] as one period
over R, by Theorem 2.2.2, the series will converge to (x2(−1) + x2(1))/2 at t = ±1, leading to
incorrect convergence at boundaries. The same result can also be found in the approximation
figure of x2(t) on the left, where the Fourier series tends to get better and better estimates of
points around t = ±1 and jump back to (x2(−1) + x2(1))/2 suddenly at t = ±1. On the other
hand, the boundary values match the other two paths, resulting in pointwise convergence for all
points.

Compare Figure 2.1 and 2.3, one can observe orthogonal polynomials are better at approximat-
ing continuously differentiable path, while Fourier series estimate path with spikes better and their
computation is more stable in the long run. Figure 2.4 in the later section provides a summary
of convergence results for different types of orthogonal polynomials and Fourier series, which also
matches the current results.

2.2.3 Discrete Fourier transform

In reality, it is not feasible to calculate coefficients of the Fourier series in (2.2.1) explicitly for some
functions. To calculate these integrals, one way is to discretise them and solve them as a system of
linear equations. This is the main idea of the discrete Fourier transform, which will be introduced
for the computation of coefficients in the later chapter.

Consider a function f ∈ L1(0, 2π) such that f(0) = f(2π), let h = 2π/N and tj = jh. By the
trapezium rule, we can express coefficients ck as

ck =
1

2π

∫ 2π

0

f(t)e−iktdt =
h

2π

f(t0)

2
+

N−1∑
j=1

f(tj)e
−iktj +

f(tN )

2

 :=
1

N

N−1∑
j=0

f(tj)e
−i 2π

N kj .
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Figure 2.3: Approximation (left) and L2 convergence (right) results for Fourier series by increasing
order N , with the same experimental setting as Figure 2.1. Results with higher order N can be
found in Figure A.1

Then the discrete Fourier transform is the sequence of (ck)
N−1
k=0 . To express discrete Fourier trans-

form in the vector form, let ωN = e−i
2π
N and

f =


f(t0)
f(t1)
...

f(tN − 1)

 , F =


c0
c1
...

cN−1

 , QN =
1√
N


1 1 · · · 1
1 ω−1 · · · ω−(N−1)

...
...

. . .
...

1 ω−(N−1) · · · ω(−(N−1))2

 .

Then the discrete Fourier transform can be formulated as

F =
1√
N

QNf ,

while its inverse transform can be derived based on unitary QN [28] as

f =
√
N(QN )−1F =

√
NQ

T

NF ,

where Q
T

N is the complex conjugate of QN . From the transform and inverse transform, we can
see that they are computationally efficient as one does not need to calculate the inverse of a large
matrix. The idea of Fast Fourier transform (FFT) takes one step further and expresses Q2N as
a simple linear transformation of two copies of QN . Fast Fourier transform is powerful since it
shrinks the computation of matrix multiplication to one-half of the original size iteratively, resulting
O(n log n) number of multiplication for Qn in FFT [25].

2.3 Approximation quality of orthogonal polynomials and
Fourier series

In the final section of this chapter, we compare the approximation results of the methods introduced
above numerically.
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2.3.1 Experiment setup

The experiment is set to compare

• Legendre polynomials: w(t) = 1

• two types of Jacobi polynomials: w(t) =
√
1 + t, w(t) =

√
1− t

• three types of shift-and-scale Hermite polynomials with different variance for pointwise ap-
proximation: ϵ = 0.1, 0.05, 0.01

• Fourier series

Regarding pointwise approximation for Hermite polynomials, each sample point ti of the function
will be approximated by a system of Hermite polynomial centred at the point ti, i.e., (H

ti,ϵ
n )n∈N. To

test approximation quality, we simulate random polynomial functions and random trigonometric
functions, where sample functions can be found in B.1 and B.2. The L2 error is then obtained by
an average of L2 error from approximations of 10 functions in each type.

2.3.2 Approximation results

Figure 2.4 illustrates the L2 error reduction corresponding to an increase in the order of orthogonal
polynomials and Fourier series. Among all bases considered, the Fourier series delivers the least
desirable approximation result for both path types, attributable to the non-guarantee of pointwise
convergence at ±1 given boundary inconsistencies. Three Jacobi polynomials, including Legendre
polynomials, exhibit comparable approximation outcomes, with a slight convergence advantage
noted for Legendre polynomials. Conversely, Hermite polynomials demonstrate a significantly re-
duced approximation error, potentially due to their shifting focus on the point of interest. However,
reducing ϵ to achieve greater concentration on sample points can quickly inflate the coefficients
of Hermite polynomials, particularly when ϵ is exceedingly small. This behaviour is corroborated
by the analytic form and recurrence relation of shift-and-scale Hermite polynomials as shown in
(2.1.7) and (2.1.8). Accordingly, Hermite polynomials with ϵ = 0.01 do not outperform those with
ϵ = 0.05. It is also worth noting the step pattern of decrease observable in Hermite polynomials,
a phenomenon that can be traced back to Remark 2.1.10.

The approximation results elucidate that the Fourier series, in requiring additional assump-
tions about function values at boundaries, fail to achieve pointwise convergence across all points
as effectively as orthogonal polynomials, which generally excel in approximating smooth paths.
Among the orthogonal polynomials, Hermite polynomials, even of low degrees, can approximate
functions with remarkable precision. However, this precision comes at the cost of extended compu-
tation times for each sample point. To mitigate computational expense, we henceforth use Hermite
polynomials with ϵ = 0.05 as the representative of the Hermite family. The findings presented in
Figure 2.4 play a crucial role in our signature inversion method discussed in the next chapter.
They establish a benchmark for the best possible performance attainable in path reconstruction
from signatures.
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Figure 2.4: L2 approximation error by different bases. The figures (from left to right) are the
corresponding error over the average of 10 random polynomial and trigonometric functions
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Chapter 3

Signature inversion

As we described in Chapter 1, signatures encode rich geometric information of a path. Given the
uniqueness of paths up to tree-like pieces in [8], it is common to wonder if one could reconstruct
a path from its signature. The inversion of signatures is still an active and challenging research
area. Inspired by a probabilistic inverse problem [29] with prior knowledge about Brownian mo-
tion, X. Geng [30] developed a constructive insight about signature inversion for rough paths.
Recently, methods like hyperbolic construction of a path [31] and symmetrization [32] focus on the
reconstruction of C1 path, which are paths that have 1st order continuous derivatives. For imple-
mentation, many algorithms [33, 34] are designed for piecewise-linear paths for practical purposes.

In this chapter, we introduce a novel and analytic method to invert the signatures of a path by
orthogonal polynomials, with a corresponding learning-based method for the Fourier series. Figure
3.1 shows the proposed method. Compared with inverting signature directly, we will first find the
connection between signatures and coefficients for different bases. After deriving the corresponding
coefficients, a path can be reconstructed from the basis. Step 2 in Figure 3.1 is quite straightfor-
ward. Therefore, in the following sections, we will focus on explaining how the connection in Step
1 is constructed for orthogonal polynomials and Fourier series.

Space of paths

Step 2: Convert coefficients back to paths
by their corresponding bases Space of coefficients 

Step 1: Linear functionals existed by universality
Inversion goal

Space of (truncated)
signatures

Figure 3.1: Proposed idea of signature inversion

3.1 An analytical method by orthogonal polynomials

3.1.1 Shuffle operations on paths

Recall that in (1.3.1), we can treat a word I as linear function indexing from the signatures
S(x)a,b ∈ T ((V )) as

Sa,b(x)
I = (I, Sa,b(x)) .
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In the theorem of shuffle identity 1.3.4, the multiplication of lower level terms of signatures expresses
higher order terms based on the rule of shuffle product � as

(I, S(x)a,b) (J, S(x)a,b) = (I � J, S(x)a,b) .

To simplify the notation in later proofs, we briefly introduce the right half shuffle product ≻
[35, 36]. Suppose I, J denote words and a denotes a letter, which constitutes words. Then the
right half shuffle product can be defined recursively by words

I ≻ a := Ia, I ≻ Ja := (I ≻ J + J ≻ I) · a,

where · is a concatenation product. Moreover, the right half shuffle product can express iterated
integrals by ∫ b

a

Sa,t(x)
Id
(
Sa,t(x)

J
)
= (I ≻ J, S(x)a,b) .

Example 3.1.1. Consider a two-dimensional real-valued path x̂ = (t, x(t)) : [a, b] → R2 with
x(a) = 0. For the first-level signature, one can compute as follow:

S(x̂)1a,t =

∫ t

a

ds = t− a = (1, Sa,t(x̂))

S(x̂)2a,t =

∫ t

a

d (x(s)) = x(t)− x(a) = x(t) = (2, Sa,t(x̂)) .

Then one can express all integrals in terms of powers of t − a and x(t) by signatures of x̂. For
example, let n,m ∈ N0,∫ b

a

(t− a)nx(t)mdt =

∫ b

a

(t− a)nx(t)md(t− a)

=

∫ b

a

(
S(x̂)1a,t

)n (
S(x̂)2a,t

)m
d
(
S(x̂)1a,t

)
= ((1�n

� 2�m) ≻ 1, Sa,b(x̂)) ,

which is followed by the shuffle identity and right shuffle product in integrals.

3.1.2 Connecting signatures and coefficients of polynomials

Recall Theorem 2.1.7 that all orthogonal polynomials have 3-term recurrence relation. For a
sequence of orthogonal polynomials (pn)n∈N with respect to the inner product

⟨f, g⟩ :=
∫ b

a

f(t)g(t)ω(t)dt, (3.1.1)

where ω : [a, b] → R. The polynomial pn satisfies the recurrence form

pn(t) = (Ant+Bn)pn−1(t) + Cnpn−2(t), n ≥ 2, (3.1.2)

with p0(t) = 1 and p1(t) = A1t + B1. Let x ∈ L2
ω such that x(a) = 0. The following function

converges pointwise to

x(t) ∼
∞∑

n=0

αx
npn(t),

where

αx
n =

1

⟨pn, pn⟩

∫ b

a

x(t)pn(t)ω(t)dt.

If ω(t)x(t) is well defined over t ∈ [a, b], let x̂ : [a, b] → R2 be the time-augmented weighted path
such that x̂ = (t, ω(t)x(t)) with respect to the inner product (3.1.1). In this chapter, We will use
the shorter notation of signatures S(x̂) := S(x̂)a,b.
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Proposition 3.1.1. Let x̂ = (t, ω(t)x(t)), where ω(t) corresponds to the weight function of a
system of orthogonal polynomials. For any n ∈ N ∪ {0}, there exists a unique ℓn ∈ T ((R2))∗ such
that for any path x,

αx
n = (ℓn, S(x̂)).

Furthermore, the linear functional (ℓn)n≥0 satisfy the following recurrence relation

ℓn = An
⟨pn−1, pn−1⟩

⟨pn, pn⟩
1 ≻ ℓn−1 + (Ana+Bn)

⟨pn−1, pn−1⟩
⟨pn, pn⟩

ℓn−1 + Cn
⟨pn−2, pn−2⟩

⟨pn, pn⟩
ℓn−2,

with

ℓ0 =
A0

⟨p0, p0⟩
21 and ℓ1 =

A1

⟨p1, p1⟩
(121+ 211) +

A1a+B1

⟨p1, p1⟩
(21).

Proof. By the universality of signature in Theorem 1.3.7, there exists such linear functionals. One
can express the first two coefficients in an orthogonal polynomial expansion of x by its signature:

αx
0 =

1

⟨p0, p0⟩

∫ b

a

A0x(t)ω(t)dt

=

(
A0

⟨p0, p0⟩
2 ≻ 1, S(x̂)

)
=

(
A0

⟨p0, p0⟩
21, S(x̂)

)
:= (ℓ0, S(x̂))

αx
1 =

1

⟨p1, p1⟩

∫ b

a

(A1t+B1)x(t)ω(t)dt

=
A1

⟨p1, p1⟩

∫ b

a

(t− a)x(t)ω(t)dt+
A1a+B1

⟨p1, p1⟩

∫ b

a

x(t)ω(t)dt

=
A1

⟨p1, p1⟩
((1� 2) ≻ 1, S(x̂)) +

A1a+B1

⟨p1, p1⟩
(21, S(x̂))

=

(
A1

⟨p1, p1⟩
(121+ 211) +

A1a+B1

⟨p1, p1⟩
(21), S(x̂)

)
:= (ℓ1, S(x̂)).

Then one can find ℓn recursively by multiplying both sides of the equation (3.1.2) by x(t)ω(t) and
integrating on [a, b]:

∫ b

a

pn(t)x(t)ω(t)dt =

∫ b

a

(Ant+Bn)pn−1(t)x(t)ω(t)dt+

∫ b

a

Cnpn−2(x)x(t)ω(t)dt

=An

∫ b

a

(t− a)d

(∫ t

a

pn−1(s)x(s)ω(s)ds

)
+ (Ana+Bn)

∫ b

a

pn−1(t)x(t)ω(t)dt

+ Cn

∫ b

a

pn−2(x)x(t)ω(t)dt.

By definition of αx
i , ∫ b

a

pn(t)x(t)ω(t)d = ⟨pn, pn⟩αx
n = ⟨pn, pn⟩(ℓn, S(x̂))

An

∫ b

a

(t− a)d

(∫ t

a

pn−1(s)x(s)ω(s)ds

)
= An⟨pn−1, pn−1⟩(1 ≻ ℓn−1, S(x̂))

(Ana+Bn)

∫ b

a

pn−1(t)x(t)ω(t)dt = (Ana+Bn)⟨pn−1, pn−1⟩(ℓn−1, S(x̂))

Cn

∫ b

a

pn−2(x)x(t)ω(t)dt = Cn⟨pn−2, pn−2⟩(ℓn−2, S(x̂)).
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Therefore, the recurrence relation of signature with respect to orthogonal polynomials is

(ℓn, S(x̂)) =An
⟨pn−1, pn−1⟩

⟨pn, pn⟩
(1 ≻ ℓn−1, S(x̂))

+ (Ana+Bn)
⟨pn−1, pn−1⟩

⟨pn, pn⟩
(ℓn−1, S(x̂))

+ Cn
⟨pn−2, pn−2⟩

⟨pn, pn⟩
(ℓn−2, S(x̂)).

From the proof, there are several assumptions about orthogonal polynomials made to derive the
recurrence relation. Firstly, the interval defined on the inner space is compact. Secondly, w(t) is
well defined on the closed interval. This may lead to a limited range of orthogonal polynomials. For
example, since the range of Hermite polynomials is not bounded, the polynomial is not applicable
based on our theorem. However, if we use a scale-and-shift version of the polynomials with most
of the weight density centred at a point, their weight can be truncated to a compact interval
numerically. In Section 2.1.3, the relation between the original Hermite polynomials and the scale-
and-shift Hermite polynomials is stated in (2.1.6). One can centre the weight density by a small
ϵ and shift the density to an interested point ti. Since the non-zero density is centred as a small
interval, Lemma 3.1.1 can be used on the truncated density over the interval.

3.1.3 Taylor approximation of the weight function

The results in 3.1.1 require signatures of x̂ = (t, w(t)x(t)). However, sometimes one may only have
signatures of x̃ = (t, x(t)). Here we propose a theoretically applicable method by approximating
the weight function in the Taylor series.

Consider the Taylor approximation of ω around t = a, i.e.,

ω(t) ≈
M∑
i=0

diω

dti

∣∣∣
t=a

(t− a)i :=

M∑
i=0

ωi(t− a)i.

Letting x̃t = (t, x(t)) and

ci := (2� 1�i) ≻ 1 = i!(21...1+ 121...1+ ...+ 1...121),

we have

αx
0 =

1

⟨p0, p0⟩

∫ b

a

A0x(t)ω(t)dt

=
A0

⟨p0, p0⟩

M∑
i=0

ωi

∫ b

a

(t− a)ix(t)dt

=

(
A0

⟨p0, p0⟩

M∑
i=0

ωi(2� 1�i) ≻ 1, S(x̃)

)

=

(
A0

⟨p0, p0⟩

M∑
i=0

ωici, S(x̃)

)
:= (ℓ0, S(x̃)),

αx
1 =

1

⟨p1, p1⟩

∫ b

a

(A1t+B1)x(t)ω(t)dt

=
1

⟨p1, p1⟩

∫ b

a

(A1(t− a) +A1a+B1)x(t)ω(t)dt

=
1

⟨p1, p1⟩

M∑
i=0

ωi

∫ b

a

(
A1(t− a)i+1 + (A1a+B1)(t− a)i

)
x(t)dt

=

(
1

⟨p1, p1⟩

M∑
i=0

ωi

(
A1(2� 1�i+1) + (A1a+B1)(2� 1�i)

)
≻ 1, S(x̃)

)
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=

(
1

⟨p1, p1⟩

M∑
i=0

ωi(A1ci+1 + (A1a+B1)ci), S(x̃)

)
:= (ℓ1, S(x̃))

By induction the same relation of 3.1.1 holds, and because it holds for any path x and signatures
span the tensor algebra we must have

ℓn = An
⟨pn−1, pn−1⟩

⟨pn, pn⟩
1 ≻ ℓn−1 + (Ana+Bn)

⟨pn−1, pn−1⟩
⟨pn, pn⟩

ℓn−1 + Cn
⟨pn−2, pn−2⟩

⟨pn, pn⟩
ℓn−2.

Remark 3.1.2. There are several reasons why we would say the Taylor approximation method is
’theoretically applicable’.

1. Firstly and most importantly, the expansion of weight function around the starting point a
is hard to find analytically; even if one manages to find the series, it may diverge.

2. Secondly, if the series converge, one still needs to determine how many orders of approxima-
tion lead to an error within a certain tolerance. Moreover, if the convergence rate is slow,
more orders of series are needed, resulting in higher levels of truncation of signature. In this
case, the computation of signature would increase exponentially, which costs computational
inefficiency and potential underflow/overflow errors.

For these reasons, signature inversion with Taylor approximation will not be demonstrated in the
result section later.

3.2 A learning-based method by Fourier series

Since a linear map within arbitrary precision is guaranteed by the universality of signature in 1.3.7,
there exist linear functionals ℓ· such that

axk = (ℓak
, S(x̂)), bxk = (ℓbk , S(x̂))

Unfortunately, there is no recurrence relation in the Fourier series that could connect with shuffle
identity in 1.3.4. Currently, the coefficients of the Fourier series cannot be found recursively.
However, the coefficient can still be learned by linear regression, which leads to our second proposal.

In this case, one can first construct a dataset of paths, and then extract coefficients of Fourier
series from training paths. After choosing suitable truncated levels of signatures and order of
Fourier series, the linear regression model can learn to find coefficients from signatures, i.e., treating
signatures as features and coefficients as targets. For a new path, its coefficients of Fourier series
can be predicted based on the signatures of the path. Therefore, the path will then be reconstructed
by the coefficients with trigonometric bases.

3.3 Results outline

In this section, we will summarise those two proposed methods by visualisation of sample paths
and error estimation for a set of paths.

3.3.1 Visualisation of inversion by different bases

To evaluate inversion results, both low-frequency and high-frequency trigonometric paths are gen-
erated as a comparison. Figure 3.2 presents the outcomes of inversions via five different bases; the
first four, employing orthogonal polynomial bases, explicitly invert the signature, while the fifth
utilises the Fourier series to learn reconstruction through linear regression. In each plot, the path
reconstruction from signature is depicted in red, whereas the reconstruction derived solely from
the bases is shown in blue. The latter serves as a benchmark, representing the optimal outcome
achievable through inversion. The reconstruction results rely on 4 main factors, which are

1. degree/order of bases (N) and levels of truncated signatures;
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2. ‘complexity’ of paths, such as frequency and smoothness;

3. the inversion method, whether it is explicit or learning-based;

4. the weight function of orthogonal polynomials.

Factor 1 significantly influences the path reconstruction by bases, consequently leading to a varied
performance in signature inversion. The orders of the bases employed here are depicted in Table
3.1, establishing a relationship with the levels of truncated signatures as supported by Proposition
3.1.1. While higher levels of signatures could potentially be utilised, the coefficients of orthogonal
polynomials depend only on the signature level, not exceeding 2 of the degree of the orthogonal
polynomials. For the Fourier series, the base order is chosen to align with that of the orthogonal
polynomials, setting the signature level at 6, given that the number of features grows exponentially
by
∑M

i=0 2
i = 2M+1 − 1. Figure 2.4 indicates that as the order increases, the approximation of the

original paths by various bases improves, thereby it is expected that reconstruction from signatures
can increasingly resemble the original paths.

Factor 2 also crucially contributes to the approximation by bases. A comparison between the
first and second columns of Figure 3.2 reveals that all bases can approximate the simple path
featured in the first column more accurately. However, the Jacobi polynomials are less effective in
approximating the high-frequency path with the current degree of polynomials, as demonstrated
in the second column. Consequently, more complex paths might yield less satisfactory inversion
results due to the limitations of bases.

Factor 3 has a direct and clear influence on signature inversion. Despite the Fourier series
successfully approximating both paths, the learning-based inversion method is unable to establish
a definitive linear map between coefficients and signatures. This difficulty explains the observed
match of general patterns, rather than exact matches, between the original paths and their recon-
struction from signatures. In contrast, signature inversion via orthogonal polynomials is explicit
and consequently, one can reasonably expect the signature inversion to closely approximate the
reconstruction from bases.

Relative to the above factors, factor 4 plays a minor role in the reconstruction process. As
observed in Figure 3.2, the left tail of Jacobi(0, 0.5) and the right tail of Jacobi(0.5, 0) approxima-
tions tend towards divergence, likely due to overflow errors as their weight functions approach zero
at t → ∓1. Meanwhile, the signature inversion of Hermite polynomials, conducted on a pointwise
basis like the base approximation, yields precise results even when lower degrees of polynomials
are utilised, due to each sample point being estimated at the centre of the weight function.

Approximation methods Orders (N) Levels of truncated signatures

Legendre 10 N+2=12

Jacobi(0, 0.5) 10 N+2=12

Jacobi(0.5, 0) 10 N+2=12

Hermite (ϵ = 0.05) 2 N+2=4

Fourier 10 6

Table 3.1: Approximation methods with corresponding orders used in Figure 3.2

3.3.2 Error comparison of explicit signature inversion

As the learning-based inversion method via the Fourier series only reveals general patterns of the
original path, the error between the reconstructed and ground-truth paths is expected to be large.
Therefore, we only compare the L2 error of signature inversion via orthogonal polynomials.

Figure 3.3 depicts the L2 error and time consumption per path as the polynomial degree accu-
mulates. Since both polynomial and trigonometric path approximations via orthogonal polynomials
exhibit a similar trend of decreasing error with increasing polynomial degrees, trigonometric paths
were chosen for illustration. A comparison between Figure 2.4 and the left plot of Figure 3.3 reveals
that the inversion results fail to reach their lower bounds, defined by the orthogonal polynomial
approximations. The L2 error for signature inversion via orthogonal polynomials is approximately
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Figure 3.2: Inversion results for low-frequency and high-frequency examples, with approximation
bases (from top to bottom) Legendre (Jacobi(0, 0)), Jacobi(0, 0.5), Jacobi(0.5, 0), Hermite (ϵ =
0.05) and Fourier
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Figure 3.3: L2 error of signature inversion via orthogonal polynomials with respect to order and
time; error and time are calculated by an average of 15 paths with 200 sample points
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tenfold larger than the error associated with polynomial approximation. This discrepancy arises
due to underflow errors incurred during the computation of linear functionals. However, these
errors appear visually negligible in the figures, largely attributable to a large number of sample
points and the wide vertical span of the paths.

Drawing parallels with the pattern exhibited by polynomial approximation, pointwise signature
inversion via Hermite polynomials outperforms inversion via Jacobi polynomials. For pointwise
inversion with Hermite polynomials, a smaller polynomial degree typically yields desirable results.
Conversely, increasing the degree of Hermite polynomials induces numerical instability due to
the computation of terms with ϵ, resulting in exponential time consumption. Supporting this
observation, the right-hand plot of Figure 3.3 presents the time consumption against the L2 error,
with an increasing degree of polynomials. The plotted points, differentiated by colour, correspond
to the degrees of the polynomials used for inversion. Drawing from the plot, we can deduce the
following:

• The inversion time is roughly equivalent across different Jacobi polynomials.

• For a given running time, signature inversion using lower-order Hermite polynomials yields
superior path reconstruction compared to inversion via higher-order Jacobi polynomials.

• When comparing inversions in equal precision, the use of Hermite polynomials accelerates
the process by approximately a factor of ten compared to Jacobi polynomials.

3.3.3 More on rough paths

Finally, we provide a brief demonstration of signature inversion on rough paths. Paths are generated
from fractional Brownian motion (FBM) [37] with Hurst index 0.5 and 0.9, which ranges from 0
to 1. Sample paths of these two kinds can be found in Figures B.3 and B.4, which supports that
the higher the Hurst is, the smoother the realisation is.

Figure 3.5 shows the inversion results via different bases on FBM paths. All inversions via
polynomials reveal the general trend of the paths. Notably, pointwise inversion via Hermite poly-
nomials captures more subtle changes in the paths. On the other hand, learning-based inversion
via the Fourier series generalised less well for FBM with Hurst 0.5, which is due to its varying and
unpredictable characteristics. Figure 3.4 illustrates the L2 error and time consumption per FBM
path as the polynomial degree accumulates, which shares similar patterns to Figure 3.3.

In summary, this work has derived an analytical signature inversion method using orthogonal
polynomials, which is also numerically validated on both smooth paths (trigonometric waves) and
rough paths (FBM). Among the polynomial choices, Hermite polynomials excel in capturing precise
path information efficiently, thereby laying the groundwork for future research in this domain.
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Figure 3.4: L2 error of signature inversion via orthogonal polynomials with respect to order and
time; settings are the same as Figure 3.3, paths are generated from fractional Brownian motion
with the Hurst index 0.5 and 0.9 (from left to right)

31



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.1

0.2

0.3

0.4

0.5

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.1

0.0

0.1

0.2

0.3

0.4

0.5

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.1

0.2

0.3

0.4

0.5

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.1

0.2

0.3

0.4

0.5

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x t

path
signatures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.0

0.1

0.2

0.3

0.4

0.5

x t

path
signatures

Figure 3.5: Inversion results on fractional Brownian motion with Hurst 0.5 and 0.9, with approxi-
mation bases (from top to bottom) Legendre (Jacobi(0, 0)), Jacobi(0, 0.5), Jacobi(0.5, 0), Hermite
(ϵ = 0.05) and Fourier
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Chapter 4

Summary and future work

In this thesis, we explored an innovative method of signature inversion via orthogonal polynomials.
We began in Chapter 1 by establishing the foundational definitions and properties of signatures,
focusing on the concept of universality. This concept is pivotal in linearising non-linear functions
by signatures, which was later extended to coefficients of orthogonal polynomials. Building on
path decomposition methods in Chapter 2, Chapter 3 provided an in-depth examination of the
analytical inversion method using orthogonal polynomials, evidenced by results from randomly
generated paths. With a match between theoretical and numerical results, we can conclude that
the inversion is exact and its performance depends on the capability of orthogonal polynomials
approximating paths.

As we reflect on the accomplishments and insights gained through the research presented in
this thesis, we also recognise numerous potentials for future exploration.

1. To begin with, there is potential to delve deeper into the convergence results for orthogonal
polynomials. By determining the analytical error bound of orthogonal polynomial approxi-
mation in relation to path smoothness, the type of orthogonal polynomials, and the degree
of the polynomials, we could establish an equivalent theoretical error bound for signature
inversion. This would enhance our understanding of the reconstruction performance.

2. Additionally, the concept of Taylor’s expansion of the weight function offers an insightful basis
for the reconstruction of paths from ’non-weighting’ time-augmented signatures, which are
frequently encountered in inversion problems. Developing a well-behaved Taylor expansion
around certain points and aligning it with the starting point could lead to the derivation of
an analytical inversion method from time-augmented signatures.

3. Moreover, the sample paths in this report are only 1-dimensional. However, in practical
applications such as quantitative finance and bioinformatics, paths are likely to be high-
dimensional and rough. To address this discrepancy, future work could extend the method
to accommodate multi-dimensional paths. The refined methodology could subsequently be
applied to real-world data such as DNA and protein sequences, opening up more possibilities
for practical applications.

In conclusion, the research presented in this thesis serves as a foundation for further exploration
and advancement in the field. By pursuing the avenues outlined above, we can continue to push
the boundaries of knowledge and contribute to practical applications in various domains.
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Appendix A

More convergence results for
Fourier series
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Figure A.1: Approximation (left) and L∞ convergence (right) results for Fourier series by more
order N , with the same experimental setting as figure 2.1
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Appendix B

Samples of random generated path
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Figure B.1: Samples of generated polynomial paths with the possible degree ranging from 10 to 20
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Figure B.2: Samples of generated trigonometric paths with highest possible frequency 15
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Figure B.3: Samples of paths generated from fractional Brownian motion with Hurst index 0.5
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Figure B.4: Samples of paths generated from fractional Brownian motion with Hurst index 0.9
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